PHYSICAL REVIEW E VOLUME 61, NUMBER 6 JUNE 2000

Dynamic stabilization in the double-well Duffing oscillator
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Bifurcations associated with stability of the saddle fixed point of the Poirmag arising from the unstable
equilibrium point of the potential, are investigated in a forced Duffing oscillator with a double-well potential.
One interesting behavior is the dynamic stabilization of the saddle fixed point. When the driving amplitude is
increased through a threshold value, the saddle fixed point becomes stabilized via a pitchfork bifurcation. We
note that this dynamic stabilization is similar to that of the inverted pendulum with a vertically oscillating
suspension point. After the dynamic stabilization, the double-well Duffing oscillator behaves as the single-well
Duffing oscillator, because the effect of the central potential barrier on the dynamics of the system becomes
negligible.

PACS numbeps): 05.45.Pq

A periodically driven double-well Duffing oscillatdrl],  lating suspension poirlt7]. To our knowledge, this is the
which has become a classic model for analysis of nonlineafirst report on such a dynamic stabilization in the double-well
phenomena, is investigated. It can be described in a normabuffing oscillator. After the dynamic stabilization, the be-
ized form by a second-order nonautonomous ordinary differhaviors of the double-well Duffing oscillator closely re-
ential equations, semble those of the single-well Duffing oscillat#] be-

cause the central barrier of the potential has no significant
X+ yi(—x+x3=A coswt, 1) effect on the motion of the system.
For the numerical calculations we transform the second-

where y is the damping coefficient, and and w are the order ordinary differential equatiofl) into a system of two
amplitude and frequency of the external driving force, re-first-order ordinary differential equations:
spectively.

The Duffing equation(1) with negative linear stiffness X=y, y=—yy+x—x3+Acoswt. 2
describes the dynamics of a buckled be&h3] as well as a
plasma oscillatof4]. Its regular and chaotic dynamics has These equations have a symmefrecause the transforma-
been analyzed in great detail by Holmes using both the thgjgn
oretical techniques and the computer simulatip®p The
results of this work have been also confirmed in experiments T
by Moon[3] for a buckeled elastic beam. Since then, a numS:x— —x, y——vy, t—t+ =
ber of authors have studied the forced double-well Duffing 2
oscillator in the past two decades, and found rich dynamical
behaviors[1] such as the fractal basin boundary betweerleaves Eq.(2) invariant. If an orbitz(t) [=(x(y),y(t))] is
coexisting competing attractofs], hopping cross-well cha- invariant undes it is called a symmetric orbit. Otherwise, it

2
T (period = 7} 3)

otic state[6], and so on. is called an asymmetric orbit and has its “conjugate” orbit
Here we are interested in the dynamical behaviors assocB41). _ _
ated with the saddle fixed point of the Poincamap, arising For the unforced case #&=0, there exist a saddle equi-

from the unstable equilibrium point of the potential. One librium point at x,y) =(0,0) and a conjugate pair of stable
interesting behavior, associated with chaotic dynamics, is thequilibrium points at X,y)=(=*1,0). However, as is in-
homoclinic intersection of the stable and unstable manifoldsreased from 0, one symmetric saddle-type orbit and two
of the saddle fixed point. In Reff2], Holmes showed that as asymmetric attracting orbits with the same perioa/®
the forcing amplitudeA is increased the stable and unstablearise from the saddle equilibrium point and the two stable
manifolds intersect transversally, giving rise to homoclinicequilibrium points, respectivelj2]. We note that they be-
motions. However, a8 increases further, another interesting come the fixed points of the Poincameap P, generated by
behavior, associated with the stability of the saddle fixedstroboscopically sampling the orbit points with the external
point, occurs. Wher passes through a threshold value, thedriving period T. Hereafter we will denote the symmetirc
saddle fixed point becomes stabilized via a pitchfork bifur-saddle fixed point and the asymmetric stable fixed points by
cation. We note that the best-known example of this dynamie; andz; , respectively. Here we are interested in the bifur-
stabilization is the inverted pendulum with a vertically oscil- cations associated with stability of the symmetric saddle
fixed point. Its linear stability is determined from the eigen-
values, called the Floquet multipliers, of the linearized Poin-
*Electronic address: sykim@cc.kangwon.ac.kr care map DP, which can be obtained using the Floquet
TElectronic address: ytkim@madang.ajou.ac.kr theory[9].
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Since the PoincareapP with a symmetryS has a con-
stant Jacobian determinaiitiet less than unity (d&P
=e T, the only possible bifurcations of periodic orbits are
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| (a)

T — T
SN(1,1,s)—'>". \

saddle-nod€SN), pitchfork (PF), and period-doublingPD)
bifurcations[10]. When a Floquet multiplier passes through
1, a PF or SN bifurcation takes place. On the other hand,
when it passes through 1, a PD bifurcation occurs. Hopf
bifurcations are excluded.

Each bifurcation curve in the parameter plane will be
classified by a pairf,q) invariant along the curve. Herg
denotes the period of the orbit amqrldenotes the torsion
number, which characterizes the average rotation number of
the nearby orbits during the periad 11]. The torsion num-
ber (normalized by the factor 2) at the PF or SN bifurca-
tion curve becomes an integer. However, when crossing a

PD bifurcation curve, not only the period but also the torsion 2.0 [~ (b) ' ' ‘ .I‘
number doubles from an odd multiple of 1/2 to an odd inte- - l]’l/
ger. To keepp as an integer, we choose the pair pfq) for 15k SN(”'S),L*-I‘/'IJ i
the PD bifurcation as that of the period-doubled orbit. We g PROD
also note that the SN bifurcations may create symmetric and PD.2)
asymmetric orbits with the samep,q). To differentiate < 1.0 -
them, their symmetries are also used to classify the SN bi-
furcations. For the case of the symmet@symmetrig orbit, —
the letter “s” (“a” ) will be added in the third entry such as 05 - T~ ~ SN(1.1.) 7
[p.g, “s” (“a”)] to label the corresponding “symmetric” SNOS) o~ < e
(“asymmetric”) SN bifrucation curve. 0.0 E2= tj X 4]
By varying the two parametes and w, we numerically 0.6 0.9 1.2
investigate the bifurcation behavior associated with the sta- @

bility of the symmetric saddle fixed point for a moderately
damped case of=0.1. The associated bifurcation structure FIG. 1. Stability diagram of the symmetric saddle fixed point for
in the w-A plane is shown in Fig. 1. Note that the region, (8 @>@(=2) and(b) ®<w,. The hatched region with vertical
hatched with vertical lines, is just the stability region of the llnés is just its stability region. The symbols SN, PF, and PD denote
symmetric saddle fixed point. It is bounded by a lower pgthe sad_dle-node, pltchfor_k, and penod-doubhng_ bifurcation curves,
bifurcation curve PR, 1), denoted by a dashed curve, and by 'eSPectively. Each curve is also labeled by a pajgf; p andq are
an upper symmetric SN bifurcation curve @\Ls), denoted the torspn number and perlod, .respef:tlvely. To differentiate the
by a dotted curve. When crossing the lower PF bifurcations‘?'mm?jt(;IC da_nd ﬁsyfﬂ.”:ft”c SN b|f#rcat|o‘rlls:’tﬁe ,I’etm?daire
curve PKO,1), the saddle fixed point becomes stabilizediso.a ed in the third entry such gs,q."s” ("a")]. For other
. . . . . details, see the text.
through a PF bifurcation by absorbing a pair of asymmetric
fixed points. As a result of this dynamic stabilization, a sym-
metric stable orbit with period 2/ (fixed point for the curve SN1,1a), denoted by a dash-dotted curve in Fig)1
Poincaremap), encircling the unstable equilibrium point of through the collision with the asymmetric unstable fixed
the potential, appears. Note that this symmetric stabilizeghoints born at the lower asymmetric SN bifurcation curve
orbit corresponds to the symmetric stable orbit, arising fronSN(1,12). After that, the symmetric saddle fixed poizi
the stable equilibrium point of the potential in the single-well becomes stable at the PF bifurcation curve®B by ab-
Duffing oscillator. Hence the dynamical behavior after suchsorbing a pair of asymmetric stable fixed points born at the
a dynamical stabilization becomes essentially the same dswer asymmetric SN bifurcation curve &N1a), which
that of the single-well Duffing oscillatoi8]. Such a stabi- will be denoted byz*,. We also note that the upper and lower
lized symmetric fixed point disappears at the upper symmetasymmetric SN bifurcation curves form a “horn” with a
ric SN bifurcation curve SN, 15) by absorbing a symmetric cusp atw= w,, as in the asymmetric Toda oscillatdr2].
unstable fixed point, born at the lower Symmetric SN bifur- We now present the concrete examp|es of bifurcations
cation curve SNL,15). associated with dynamic stabilization of the symmetric
For the unforced and undamped case, locally the Duffingsaddle fixed point. The bifurcation diagram and the phase-
oscillator near the two stable equilibrium points &)= flow and Poincarenap plots are also given for clear presen-
(£1,0) behaves as a soft spring with the natural frequencyations of the associated bifurcations.
J2. Hence the main resonance occursatw (= 2) in the We first consider the case ab>w,. For w=2w,
linear limit. For o> w, the symmetric saddle fixed poiaf (=24/2), a subharmonic resonance occurs in which the
becomes stabilized at the PF bifurcation curve((PE in  asymmetric fixed pointg’ become unstable by a PD bifur-
Fig. 1(@ by absorbing a pair of asymmetric stable fixed cation. Note that the PD bifurcation curve @L®), belong-
pointsz; . However, foro<w,, the asymmetric stable fixed ing to the subharmonic resonance, becomes folded back at
pointsz; disappear at the upper asymmetric SN bifurcationw = w; (=3.23) [see Fig. 1a)]. Hence, whenw>w; no PD
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FIG. 3. Bifurcation diagramiplot of x vs A) for w=1.2. Here
the solid line denotes a stable fixed point, while the dashed line

\ﬂ}i"‘f 18 - represent an unstable fixed point. The symbols also denote the same
2 | \PPO2) SN as those in Fig. 1.
\\ g
4 T“j‘”'fﬂ’ . ) =1.2 is shown in Fig. 3. Unlike the case af>w,, the
0 5 10 15 asymmetric fixed pointg; disappear foA=0.101 ... by
A the asymmetric SN bifurcations, and then jump phenomena

FIG. 2. Bifurcation diagramsplots of x vs A) for (8) @=3.3  OCcur in which the small asymmetric fixed poirt§ are
and (b) w=3.0. Here the solid line denotes a stable fixed point,Feplaced by the relatively large asymmetric fixed poirfis
while the dashed line represents an unstable fixed point. The synborn for A=0.053 75 via the asymmetric SN bifurcations.
bols denote the same as those in Fig. 1. The phase flow of thafter that, the replaced asymmetric fixed poiafs play the
stabilized symmetric orbit foA=10 is denoted by a solid curve in same role for the dynamic stabilization as the small asym-
the inset in(a), and its Poincarenap is represented by a solid circle. metric fixed pointszX do in the above case of>w,. Hence

_ ) o ) the symmetric saddle fixed poinf becomes stable via a PF
bifurcations occur for the asymmetric fixed poiafs. As an i, rcation forA=1.550 . . . by absorbing?,.

example, we consider the case @ 3.3. As shown in the Finally, we discuss the bifurcation behavior of the double-
bifurcation diagram in Fig. @), the symmetric saddle fixed el Duffing oscillator after the dynamic stabilization of the
point z{ becomes stable through a PF bifurcation ®r  symmetric saddle fixed point. We note that the stabilized
=9.255 ... by absorbing a pair of asymmetric fixed pointssymmetric orbit, encircling the unstable equilibrium point of
z, . Then a stabilized symmetric orbit, encircling the un-the potential, corresponds to the symmetric stable orbit, aris-
stable equilibrium point of the potential, appears, which ising from the stable equilibrium point in the single-well Duf-
shown forA=10 in the inset in Fig. @). After this dynamic  fing oscillator. Consequently, the double-well Duffing oscil-
stabilization, the dynamical behavior becomes similar to thatator behaves as the single-well Duffing oscillator because
of the single-well Duffing oscillator, because the effect of thethe central potential barrier has no significant effect on the
central potential barrier on the dynamics of the system bemotion of the system. As an example, we present a bifurca-
comes negligible. Such a stabilized symmetric fixed pointion diagram(plot of x vs ) in Fig. 4, obtained by the
also disappears fok=18.105 ... through a SN bifurcation frequency scanning foA=10. The symmetric orbit stabi-
by absorbing a symmetric unstable fixed point, bornAor lized through the PF bifurcation of tyd®,1) disappears for

=1.309 ... via a symmetric SN bifurcation. ®w=2.646 ... by a symmetric SN bifurcation of ty/&,1,
In the range ofw,<w<w¢, the mechanism of dynamic s), and then jumps to a large symmetric orbit born for
stabilization of the symmetric saddle fixed point is the same=9.306 ... via a symmetric SN bifurcation of typk,1s).

except for the bifurcation behavior of the asymmetric fixedA phase portrait of the large symmetric orbit fer=2.0 is
pointsz; . As an example, we consider the casewof3.0.  shown in the inset. As is decreased, large symmetric orbits
As shown in Fig. &), the asymmetric fixed pointg; lose  with higher odd torsion numbers(p=3,5, . . .),encircling
their stability forA=0.748 ... by forward PD bifurcations, the three equilibrium points of the potential, appear succes-
but they become restabilized fAr=4.991 ... by backward sively. The phase portraits of the large symmetric orbits with
PD bifurcations. Note that the subsequent bifurcations, assdersion numbersp=3,5 are given foro=0.95598 and
ciated with dynamic stabilization, are the same as those fd0.579 35 in the insets, respectively. Note that the large sym-
the above case ab=3.3. metric orbits with higher torsion numbers have an increasing
We next consider the case of<w,. An example foro ~ number of loops. Furthermore, each symmetric orbit with
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FIG. 4. Bifurcation diagraniplot of x vs w) for A=10. Note
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behaviors are essentially the same as those in the single-well
Duffing oscillator(refer to Fig. 1 in Ref[11]).

To confirm the above numerical results, we also con-
structed the electronic analog simulator of E#). with the
usual operational amplifiers and multipliers, and made an
analog study. Dynamic stabilization of the saddle fixed point
was thus observed experimentally. The details on the experi-
mental results will be given elsewher&3].

To sum up, we have investigated the dynamic stabiliza-
tion of the symmetric saddle fixed point, arising from the
unstable equilibrium point of the potential. As the amplitude
of the driving force increases through a threshold value, the
saddle fixed point becomes stabilized through a PF bifurca-
tion by absorbing a pair of asymmetric fixed points. After the
dynamic stabilization, the double-well Duffing oscillator ex-
hibits the single-well-like behavior, because the central bar-
rier of the potential has no significant effect on the motion of
the system. We also note that similar dynamic stabilization
occurs in many other driven nonlinear dynamical systems
such as the inverted penduldm], the directly driven pen-

that the horizontakw axis is drawn in the common logarithmic dulum[14], and the parametrically and directly driven sine-
scale, while the scale of the verticabxis is linear. Here the solid Gordon system$15]. We thus believe that such dynamic
and dashed lines denote stable and unstable fixed points, respegfabilization is a rather general phenomenon occurring in
tively. The symbols also denote the same as those in Fig. 1. Theany driven nonlinear systems with both the stable and un-

phase portraits of the three large symmeric orbits, born by the symstable equilibrium points of the potential.

metric SN bifurcations of typdgl,1s), (3,1s), and (5,1s), are
shown forw=2.0, ©=0.955 98, andv=0.579 35, respectively.
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