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Dynamic stabilization in the double-well Duffing oscillator
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Bifurcations associated with stability of the saddle fixed point of the Poincare´ map, arising from the unstable
equilibrium point of the potential, are investigated in a forced Duffing oscillator with a double-well potential.
One interesting behavior is the dynamic stabilization of the saddle fixed point. When the driving amplitude is
increased through a threshold value, the saddle fixed point becomes stabilized via a pitchfork bifurcation. We
note that this dynamic stabilization is similar to that of the inverted pendulum with a vertically oscillating
suspension point. After the dynamic stabilization, the double-well Duffing oscillator behaves as the single-well
Duffing oscillator, because the effect of the central potential barrier on the dynamics of the system becomes
negligible.

PACS number~s!: 05.45.Pq
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A periodically driven double-well Duffing oscillator@1#,
which has become a classic model for analysis of nonlin
phenomena, is investigated. It can be described in a nor
ized form by a second-order nonautonomous ordinary dif
ential equations,

ẍ1g ẋ2x1x35A cosvt, ~1!

where g is the damping coefficient, andA and v are the
amplitude and frequency of the external driving force,
spectively.

The Duffing equation~1! with negative linear stiffness
describes the dynamics of a buckled beam@2,3# as well as a
plasma oscillator@4#. Its regular and chaotic dynamics ha
been analyzed in great detail by Holmes using both the
oretical techniques and the computer simulations@2#. The
results of this work have been also confirmed in experime
by Moon @3# for a buckeled elastic beam. Since then, a nu
ber of authors have studied the forced double-well Duffi
oscillator in the past two decades, and found rich dynam
behaviors@1# such as the fractal basin boundary betwe
coexisting competing attractors@5#, hopping cross-well cha
otic state@6#, and so on.

Here we are interested in the dynamical behaviors ass
ated with the saddle fixed point of the Poincare´ map, arising
from the unstable equilibrium point of the potential. O
interesting behavior, associated with chaotic dynamics, is
homoclinic intersection of the stable and unstable manifo
of the saddle fixed point. In Ref.@2#, Holmes showed that a
the forcing amplitudeA is increased the stable and unstab
manifolds intersect transversally, giving rise to homoclin
motions. However, asA increases further, another interestin
behavior, associated with the stability of the saddle fix
point, occurs. WhenA passes through a threshold value, t
saddle fixed point becomes stabilized via a pitchfork bif
cation. We note that the best-known example of this dyna
stabilization is the inverted pendulum with a vertically osc
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lating suspension point@7#. To our knowledge, this is the
first report on such a dynamic stabilization in the double-w
Duffing oscillator. After the dynamic stabilization, the b
haviors of the double-well Duffing oscillator closely re
semble those of the single-well Duffing oscillator@8# be-
cause the central barrier of the potential has no signific
effect on the motion of the system.

For the numerical calculations we transform the seco
order ordinary differential equation~1! into a system of two
first-order ordinary differential equations:

ẋ5y, ẏ52gy1x2x31A cosvt. ~2!

These equations have a symmetryS because the transforma
tion

S:x→2x, y→2y, t→t1
T

2 FT ~period!5
2p

v G ~3!

leaves Eq.~2! invariant. If an orbitz(t) @[„x(y),y(t)…# is
invariant underS, it is called a symmetric orbit. Otherwise,
is called an asymmetric orbit and has its ‘‘conjugate’’ orb
Sz(t).

For the unforced case ofA50, there exist a saddle equ
librium point at (x,y)5(0,0) and a conjugate pair of stab
equilibrium points at (x,y)5(61,0). However, asA is in-
creased from 0, one symmetric saddle-type orbit and
asymmetric attracting orbits with the same period 2p/v
arise from the saddle equilibrium point and the two sta
equilibrium points, respectively@2#. We note that they be-
come the fixed points of the Poincare´ map P, generated by
stroboscopically sampling the orbit points with the extern
driving period T. Hereafter we will denote the symmetir
saddle fixed point and the asymmetric stable fixed points
zs* andza* , respectively. Here we are interested in the bifu
cations associated with stability of the symmetric sad
fixed point. Its linear stability is determined from the eige
values, called the Floquet multipliers, of the linearized Po
caré map DP, which can be obtained using the Floqu
theory @9#.
6517 ©2000 The American Physical Society
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Since the Poincare´ mapP with a symmetryS has a con-
stant Jacobian determinant~det! less than unity (detDP
5e2gT), the only possible bifurcations of periodic orbits a
saddle-node~SN!, pitchfork ~PF!, and period-doubling~PD!
bifurcations@10#. When a Floquet multiplier passes throug
1, a PF or SN bifurcation takes place. On the other ha
when it passes through21, a PD bifurcation occurs. Hop
bifurcations are excluded.

Each bifurcation curve in the parameter plane will
classified by a pair (p,q) invariant along the curve. Hereq
denotes the period of the orbit andp denotes the torsion
number, which characterizes the average rotation numbe
the nearby orbits during the periodq @11#. The torsion num-
ber ~normalized by the factor 2p) at the PF or SN bifurca-
tion curve becomes an integer. However, when crossin
PD bifurcation curve, not only the period but also the tors
number doubles from an odd multiple of 1/2 to an odd in
ger. To keepp as an integer, we choose the pair of (p,q) for
the PD bifurcation as that of the period-doubled orbit. W
also note that the SN bifurcations may create symmetric
asymmetric orbits with the same (p,q). To differentiate
them, their symmetries are also used to classify the SN
furcations. For the case of the symmetric~asymmetric! orbit,
the letter ‘‘s’’ ~‘‘ a’’ ! will be added in the third entry such a
@p,q, ‘‘ s’’ ~‘‘ a’’ !# to label the corresponding ‘‘symmetric’
~‘‘asymmetric’’! SN bifrucation curve.

By varying the two parametersA andv, we numerically
investigate the bifurcation behavior associated with the
bility of the symmetric saddle fixed point for a moderate
damped case ofg50.1. The associated bifurcation structu
in the v-A plane is shown in Fig. 1. Note that the regio
hatched with vertical lines, is just the stability region of t
symmetric saddle fixed point. It is bounded by a lower
bifurcation curve PF~0,1!, denoted by a dashed curve, and
an upper symmetric SN bifurcation curve SN~1,1,s), denoted
by a dotted curve. When crossing the lower PF bifurcat
curve PF~0,1!, the saddle fixed point becomes stabiliz
through a PF bifurcation by absorbing a pair of asymme
fixed points. As a result of this dynamic stabilization, a sy
metric stable orbit with period 2p/v ~fixed point for the
Poincare´ map!, encircling the unstable equilibrium point o
the potential, appears. Note that this symmetric stabili
orbit corresponds to the symmetric stable orbit, arising fr
the stable equilibrium point of the potential in the single-w
Duffing oscillator. Hence the dynamical behavior after su
a dynamical stabilization becomes essentially the same
that of the single-well Duffing oscillator@8#. Such a stabi-
lized symmetric fixed point disappears at the upper symm
ric SN bifurcation curve SN~1,1,s) by absorbing a symmetric
unstable fixed point, born at the lower symmetric SN bifu
cation curve SN~1,1,s).

For the unforced and undamped case, locally the Duffi
oscillator near the two stable equilibrium points at (x,y)5
(61,0) behaves as a soft spring with the natural freque
A2. Hence the main resonance occurs atv5v r(.A2) in the
linear limit. For v.v r the symmetric saddle fixed pointzs*
becomes stabilized at the PF bifurcation curve PF~0,1! in
Fig. 1~a! by absorbing a pair of asymmetric stable fix
pointsza* . However, forv,v r , the asymmetric stable fixe
pointsza* disappear at the upper asymmetric SN bifurcat
d,
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curve SN~1,1,a), denoted by a dash-dotted curve in Fig. 1~b!,
through the collision with the asymmetric unstable fix
points born at the lower asymmetric SN bifurcation cur
SN~1,1,a). After that, the symmetric saddle fixed pointzs*
becomes stable at the PF bifurcation curve PF~0,1! by ab-
sorbing a pair of asymmetric stable fixed points born at
lower asymmetric SN bifurcation curve SN~1,1,a), which
will be denoted byzsn* . We also note that the upper and low
asymmetric SN bifurcation curves form a ‘‘horn’’ with
cusp atv5v r , as in the asymmetric Toda oscillator@12#.

We now present the concrete examples of bifurcatio
associated with dynamic stabilization of the symmet
saddle fixed point. The bifurcation diagram and the pha
flow and Poincare´-map plots are also given for clear prese
tations of the associated bifurcations.

We first consider the case ofv.v r . For v52v r

(.2A2), a subharmonic resonance occurs in which
asymmetric fixed pointsza* become unstable by a PD bifur
cation. Note that the PD bifurcation curve PD~1,2!, belong-
ing to the subharmonic resonance, becomes folded bac
v5v f (.3.23) @see Fig. 1~a!#. Hence, whenv.v f no PD

FIG. 1. Stability diagram of the symmetric saddle fixed point f
~a! v.v r(.A2) and~b! v,v r . The hatched region with vertica
lines is just its stability region. The symbols SN, PF, and PD den
the saddle-node, pitchfork, and period-doubling bifurcation curv
respectively. Each curve is also labeled by a pair (p,q); p andq are
the torsion number and period, respectively. To differentiate
symmetric and asymmetric SN bifurcations, the letterss anda are
also added in the third entry such as@p,q,‘‘ s’’ ~‘‘ a’’ !#. For other
details, see the text.



nt
n-
i

ha
he
be
in

n

c
e

ed

,

ss
f

ena

s.

m-

F

le-
e
ed
of
ris-
f-
il-
use
the
ca-

-

ts

es-
ith

ym-
ing
ith

int
y
t

n
e.

line
same

PRE 61 6519DYNAMIC STABILIZATION IN THE DOUBLE-WEL L . . .
bifurcations occur for the asymmetric fixed pointsza* . As an
example, we consider the case ofv53.3. As shown in the
bifurcation diagram in Fig. 2~a!, the symmetric saddle fixed
point zs* becomes stable through a PF bifurcation forA
59.255 . . . by absorbing a pair of asymmetric fixed poi
za* . Then a stabilized symmetric orbit, encircling the u
stable equilibrium point of the potential, appears, which
shown forA510 in the inset in Fig. 2~a!. After this dynamic
stabilization, the dynamical behavior becomes similar to t
of the single-well Duffing oscillator, because the effect of t
central potential barrier on the dynamics of the system
comes negligible. Such a stabilized symmetric fixed po
also disappears forA518.105 . . . through a SN bifurcatio
by absorbing a symmetric unstable fixed point, born forA
51.309 . . . via a symmetric SN bifurcation.

In the range ofv r,v,v f , the mechanism of dynami
stabilization of the symmetric saddle fixed point is the sam
except for the bifurcation behavior of the asymmetric fix
pointsza* . As an example, we consider the case ofv53.0.
As shown in Fig. 2~b!, the asymmetric fixed pointsza* lose
their stability forA50.748 . . . by forward PD bifurcations
but they become restabilized forA54.991 . . . by backward
PD bifurcations. Note that the subsequent bifurcations, a
ciated with dynamic stabilization, are the same as those
the above case ofv53.3.

We next consider the case ofv,v r . An example forv

FIG. 2. Bifurcation diagrams~plots of x vs A) for ~a! v53.3
and ~b! v53.0. Here the solid line denotes a stable fixed po
while the dashed line represents an unstable fixed point. The s
bols denote the same as those in Fig. 1. The phase flow of
stabilized symmetric orbit forA510 is denoted by a solid curve i
the inset in~a!, and its Poincare´ map is represented by a solid circl
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51.2 is shown in Fig. 3. Unlike the case ofv.v r , the

asymmetric fixed pointsza* disappear forA50.101 . . . by
the asymmetric SN bifurcations, and then jump phenom
occur in which the small asymmetric fixed pointsza* are
replaced by the relatively large asymmetric fixed pointszsn* ,
born for A.0.053 75 via the asymmetric SN bifurcation
After that, the replaced asymmetric fixed pointszsn* play the
same role for the dynamic stabilization as the small asy
metric fixed pointsza* do in the above case ofv.v r . Hence
the symmetric saddle fixed pointzs* becomes stable via a P
bifurcation forA51.550 . . . by absorbingzsn* .

Finally, we discuss the bifurcation behavior of the doub
well Duffing oscillator after the dynamic stabilization of th
symmetric saddle fixed point. We note that the stabiliz
symmetric orbit, encircling the unstable equilibrium point
the potential, corresponds to the symmetric stable orbit, a
ing from the stable equilibrium point in the single-well Du
fing oscillator. Consequently, the double-well Duffing osc
lator behaves as the single-well Duffing oscillator beca
the central potential barrier has no significant effect on
motion of the system. As an example, we present a bifur
tion diagram~plot of x vs v) in Fig. 4, obtained by the
frequency scanning forA510. The symmetric orbit stabi
lized through the PF bifurcation of type~0,1! disappears for
v52.646 . . . by a symmetric SN bifurcation of type~1,1,
s), and then jumps to a large symmetric orbit born forv
59.306 . . . via a symmetric SN bifurcation of type~1,1,s).
A phase portrait of the large symmetric orbit forv52.0 is
shown in the inset. Asv is decreased, large symmetric orbi
with higher odd torsion numbersp(p53,5, . . . ),encircling
the three equilibrium points of the potential, appear succ
sively. The phase portraits of the large symmetric orbits w
torsion numbersp53,5 are given forv50.955 98 and
0.579 35 in the insets, respectively. Note that the large s
metric orbits with higher torsion numbers have an increas
number of loops. Furthermore, each symmetric orbit w

,
m-
he

FIG. 3. Bifurcation diagram~plot of x vs A) for v51.2. Here
the solid line denotes a stable fixed point, while the dashed
represent an unstable fixed point. The symbols also denote the
as those in Fig. 1.



-

4
rg
tio

-well

n-

an
int
eri-

za-
e

de
the
ca-
he
x-
ar-
of
ion
ms

e-
ic

in
un-

e-

der

c.

c

sp
T
ym

6520 PRE 61SANG-YOON KIM AND YOUNGTAE KIM
odd torsion numberp loses its stability through a symmetry
breaking PF bifurcation of type (p11,1). Two such PF bi-
furcations of type (2,1) and (4,1) are also shown in Fig.
Then large asymmetric orbits with broken symmetry unde
period-doubling cascades. We note that all these bifurca

FIG. 4. Bifurcation diagram~plot of x vs v) for A510. Note
that the horizontalv axis is drawn in the common logarithmi
scale, while the scale of the verticalx axis is linear. Here the solid
and dashed lines denote stable and unstable fixed points, re
tively. The symbols also denote the same as those in Fig. 1.
phase portraits of the three large symmeric orbits, born by the s
metric SN bifurcations of type~1,1,s), ~3,1,s), and ~5,1,s), are
shown forv52.0, v50.955 98, andv50.579 35, respectively.
.
o
n

behaviors are essentially the same as those in the single
Duffing oscillator~refer to Fig. 1 in Ref.@11#!.

To confirm the above numerical results, we also co
structed the electronic analog simulator of Eq.~1! with the
usual operational amplifiers and multipliers, and made
analog study. Dynamic stabilization of the saddle fixed po
was thus observed experimentally. The details on the exp
mental results will be given elsewhere@13#.

To sum up, we have investigated the dynamic stabili
tion of the symmetric saddle fixed point, arising from th
unstable equilibrium point of the potential. As the amplitu
of the driving force increases through a threshold value,
saddle fixed point becomes stabilized through a PF bifur
tion by absorbing a pair of asymmetric fixed points. After t
dynamic stabilization, the double-well Duffing oscillator e
hibits the single-well-like behavior, because the central b
rier of the potential has no significant effect on the motion
the system. We also note that similar dynamic stabilizat
occurs in many other driven nonlinear dynamical syste
such as the inverted pendulum@7#, the directly driven pen-
dulum @14#, and the parametrically and directly driven sin
Gordon systems@15#. We thus believe that such dynam
stabilization is a rather general phenomenon occurring
many driven nonlinear systems with both the stable and
stable equilibrium points of the potential.

This work was supported from the Interdisciplinary R
search program of the KOSEF~S.Y.K. and Y.K.! under
Grant No. 1999-2-112-004-3, the program of the KRF un
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